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The dynamical equations of high-energy-electron diffraction from imperfect crystals are reduced to the 
usual first-order hyperbolic system of partial differential equations by neglecting second-order partial 
derivatives. This system is then converted to an integral equation from which an iterative solution is 
obtained. Next, a second-order parabolic system of partial differential equations is considered. An equiv- 
alent integral equation is constructed, and by an asymptotic expansion is compared with the integral 
equation for the first-order system. Finally an explicit correction term is given as a measure of the validity 
of ignoring the second-order partial derivatives in deriving the first-order equation. 

1. Introduction 

In transmission electron microscopy the usual descrip- 
tions of high-energy-electron diffraction from imper- 
fect crystals (e.g. Takagi, 1962, 1969; Lewis & Villa- 
grana, 1972), that are used to describe diffraction-con- 
trast images, neglect second-order partial derivatives. 
By comparing contrast calculations made both with 
and without second-order partial derivatives, Howie & 
Basinski (1968) have questioned this approximation 
for certain diffraction conditions. Since numerical cal- 
culations using the complete dynamical diffraction 
equations are quite lengthy, it is desirable to have an 
analytical method to assess the importance of second- 
order partial derivatives. In this paper we shall set 
forth such a criterion for judging the importance of 
these derivatives. 

First, we shall derive an integral equation from 
which we obtain an iterative solution for the first-order 
hyperbolic system one obtains when second-order par- 
tial derivatives are neglected in the dynamical equa- 
tions (Takagi formalism). Next, we shall obtain an 
equivalent integral equation to the complete dynamical 
equations. Then by means of an asymptotic expansion 
we obtain the solution for this system, so that we can 
compare it to the solution of the first-order diffraction 
equations. The difference between these two solutions 
provides a measure of the validity of ignoring second- 
order partial derivatives in the dynamical equations. 

2. The imperfect-crystal equations 

If we were to stress any of the words of the title of this 
section, the emphasis would be on the word crystal. 
The reason for this is that we are considering electron 
diffraction from substances whose underlying struc- 
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ture is clearly and unmistakeably crystalline. This is 
not to imply, of course, that the crystal does not con- 
tain imperfections such as point defects or dislocations, 
but merely the existence of a well defined reference lat- 
tice. It is this well defined reference lattice that accounts 
for the coarse structure in an electron-diffraction pat- 
tern from an imperfect crystal. 

What is this coarse structure, and how can we most 
naturally incorporate it into a diffraction theory? In 
order to answer the first question, we suggest that the 
diffraction pattern from the substances that we are con- 
sidering must contain the clear imprint of the reference 
crystal. By this we mean that there exist well localized 
diffraction maxima separated from each other by re- 
gions of negligible intensity, and that these maxima 
are arranged in an array that images a portion of the 
reference reciprocal lattice. (In an imaginary world, 
where we might have at our disposal an infinitely large 
sample of perfect crystal and detection instruments of 
unlimited resolution, these maxima would shrink to 
the limiting case of the mathematical points of the 
reciprocal lattice.) 

In response to our second question, we suggest that 
the localized nature of the imperfect-crystal diffraction 
pattern motivates us to consider a resolution of the 
various functions that would have been spatially peri- 
odic in the perfect crystal into a series of terms, each 
of which has a Fourier transform that has support in 
a different region of Fourier (reciprocal) space. Clearly 
the disjoint nature of this support and the completeness 
of reciprocal space suggests that we are dealing with a 
unique expansion of an arbitrary function into or- 
thogonal terms. To be explicit, we shall expand the 
Schr6dinger wavefunction of the scattered electrons as 

• (r)-- ~ dg(r) exp (ik s . r) (1) 
g 

where g (and later h) is a compressed notation for the 
reciprocal-lattice vector corresponding to the diffract- 
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ing planes (hkl), Igl =2n/d ,  d is the atomic spacing of 
the planes (hkl), k s - k0 + g, where k0 points in the direc- 
tion of the transmitted beam, [k0[ =2n/2, and 2 is the 
electron wavelength. It is important to point out that 
the Fourier transform of do(r ) has support only within 
the first Brillouin zone for all g. This expansion for the 
wave function can be achieved for any reasonable O(r) 
and it is, of course, equivalent to writing O(r) as the 
Fourier transform of another function; however we 
feel that in view of our previous remarks this expan- 
sion is more natural and more susceptible to physical 
interpretation than a Fourier transform. Also, equa- 
tion (1) has the important advantage of maintaining a 
very close notational connection with the Fourier 
series one would use for the limiting case of the perfect 
crystal, while simultaneously allowing one to relax the 
constraint of translational invariance. The main task 
of the theory will be to calculate the unknown func- 
tions do(r ) . 

The precise connection between the expansion given 
in equation (1) and the more usual Fourier transform 
is easily outlined. First, we define the Fourier trans- 
form of #(r) through the equation 

O(r)= f -  ~o~ ~(k) exp ( ik .  r)dk (2) 

where dk---d"k and n is the dimensionality. Clearly 
this integral can be broken up into a sum of integrals, 
one for each reciprocal-lattice point, where the cor- 
responding region of integration is restricted to a re- 
ciprocal cell, equivalent to the first Brillouin zone, 
centered on a reciprocal-lattice point (we shall refer 
to the cell centered on the origin of reciprocal space 
as the first cell). In order to do this efficiently, let us 
define the notation [ko] to mean the reciprocal-lattice 
point closest to the vector k s (this vector is not in 
general a reciprocal-lattice vector). Also, we will make 
use of the characteristic function fo(k), which equals 
one when k lies in the cell centered on g and zero other- 
wise. Our definition of do(r) is then 

foo do(r) =ex p ( - i k  o . r) fck~](k)~(k) exp ( ik .  r )dk.  
-oo 

(3) 

The integral in equation (3) is, of course, not really 
over the entire reciprocal space, but rather over one 
cell because of the presence of the characteristic func- 
tion. By comparing the expansion of equation (1) to 
that of equation (2), making use of our definition of 
do(r ) , one readily sees that the two expansions are 
equivalent. Furthermore, by using a simple shift of the 
variables of integration in equation (3), we have 

l~oofEk~a(k+ ko) q~(k do(r)= +k~) exp ( ik .  r )dk .  (4) 

Inspection of the indices of the characteristic function 
in equation (4) tells us that do(r) has support only in 
the first cell. 

We shall resolve the imperfect-crystal potential, 
V(r), in the same manner as the wave function: 

V(r)= ~ vo(r ) exp (ig. r ) .  (5) 
g 

Next, by requiring that the wavefunction be a solu- 
tion of the time-independent Schr6dinger equation, we 
obtain 

- V2do(r) + do(r) 
i 

koy kgx e d o ( r ) + _ - - d q ( r )  
+ ko----z- c~x ko~ " ~,y 

i (XZ_kZo)do(r)_ i ug_~(r)do(r) ] 
- 2ko-W 2k;;  J 

× exp ( ik  o . r )=  0 (6) 

where uo(r)-hZvg(r)/2m, X is the wave vector of the 
electron in vacuum, and m is the relativistically cor- 
rected electron mass. 

At this point in our derivation we make our first 
and principle approximation to the Schr6dinger equa- 
tion, so that we can obtain 'simple' local differential 
equations for the functions do(r ) . We shall assume that 
the Fourier transform of each of the terms enclosed 
in brackets in equation (6) has support in the first cell. 
Now according to our previously defined construction 
the Fourier transform of each of these terms, with the 
possible exception of the product term - i ~u  o_ h(r)do(r)/ 

h 
2koz, has support in the first cell. Since the Fourier 
transform of the product term is a convolution, it can 
have support in the first cell as well as higher-order 
cells. Therefore, our approximation amounts to ne- 
glecting the overlap of the transformed product term 
into higher-order cells. This approximation is rigor- 
ously exact for the perfect crystal, and for the imper- 
fect crystal its degree of validity depends on the mag- 
nitude of the lattice distortion. If, for example, the 
Fourier transforms of both uo_~,(r ) and do(r ) do not 
extend appreciably past the first half of the first cell, 
then there is essentially no overlap whatsoever. 

Once the overlap of the transformed product term 
is neglected the entire term in brackets has support in 
the first cell. Consequently, equation (6) represents an 
expansion of zero into a series of orthogonal terms, 
telling us that each term of the series must equal zero. 
Thus, we are led to a set of approximate local dif- 
ferential equations for the unknown functions do(r ) . 

Since we are interpreting the functions do(r ) as de- 
scribing diffraction into disjoint regions of reciprocal 
space, the experimental existence of only a finite num- 
ber of maxima in the diffraction pattern suggest an- 
other well known approximation, the n-beam approx- 
imation. In this approximation we retain only a finite 
subset of the local differential equations. We shall also 
simplify our analysis of these equations, without loss 
of generality, by restricting the coordinate dependence 
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to two coordinates (in Fig. 1, x is the transverse co- 
ordinate and z is the parallel coordinate). We then 
have the following system of n equations: 

i V2dg(x,z)+ c~ do(x,z)+ kox c~ do(x,z ) 
2koz ~-z koz Ox 

i 
2k,, (X2-k~)dg(x'z)-"2 ~,-Z u°-*(x'z) 

x dg(x,z)=O. (7) 

To summarize, equation (7) is an approximation 
whose solutions are approximations to the exact do(r ) . 
Being approximations they do not in general have com- 
pact support. The validity of the approximation lead- 
ing to equation (7) is measured by the overlap of the 
Fourier transform of the product term into higher- 
order cells. As pointed out by Howie & Basinski (1968), 
this approximation must be questioned when the lat- 
tice distortion varies so rapidly with position that dif- 
fuse scattering is visible in regions mid-way between 
the Bragg maxima in the diffraction pattern. In this 
case one must use a more rigorous formulation of the 
dynamical theory (e.g. Kuriyama, 1972) to describe 
the diffraction process. 

In order to facilitate further manipulations, we shall 
rewrite equation (7) in matrix form" 

( ~ 3 ) D(x,z ) - - iC V a O ( x , z ) +  I ~ -  z + B  c~x 

=iA(x,z)D(x,z) (8) 

where C is a matrix with elements Cg, = 6ghzko~, D(x, z) 
is a column vector with elements do(x,z ), I is the 
identity matrix, A(x,z) is a matrix with elements 

I 1 (X2+uo-kZo) for g=h 

A°h=12~g uo_j,(x,z ) for gCh 

/ 1 / / L .  

Transmitted ~ Diffracted 
electron beam electron beam 

Fig. 1. Two-beam region of determinancy. The triangle PAB 
and its mesh are generated by the characteristics of the 
hyperbolic system and define the region of determinancy for 
the point P. The coordinate system used in this work is also 
indicated. 

and B is a matrix with elements Boh=ko,fion/ko=. We 
shall refer to equation (8) as the second-order equation 
of high-energy-electron diffraction from an imperfect 
crystal. 

Since we have assumed that the terms in equation (6) 
are orthogonal, we expect that the do(x, z) will be slowly 
varying on the scale of a unit cell. Because of this, we 
shall initially neglect the term involving V2D(x,z) in 
equation (8). Thus, we obtain the hyperbolic system 

LD(x, z) = iA(x, z)D(x, z) (9) 

where f~ = (IO/Oz + BO/Sx) and the operator [', is hyper- 
bolic and in normal form. We shall refer to this equa- 
tion as the first-order equation of high-energy-electron 
diffraction from an imperfect crystal. 

3. The first-order equations 

As we have noted, the operator I_, is hyperbolic; that 
is to say the elements of L are directional (interior) 
derivatives along the characteristic curves 

dxg(z) _ 
tan 0 o (10) 

dz 

where 0 o is the Bragg angle of the gth reflection, and 
the xo(z ) are merely straight lines in the x-z plane, 
since the Bragg angles of the diffracted waves are con- 
stant parameters. As shown in Fig. 1, the region of 
determinancy for the solution D(x,z) at a point P in 
the crystal consists of the interior of the triangle 
bounded by the characteristics with the greatest and 
least slopes passing through P, and the base z = 0. 

One also notices that in equation (8), the inverse of 
the wave vector plays the role of a coupling constant. 
The higher the energy of the incident wave, the larger 
k o, and hence, the smaller the coupling to the crystal 
potential. It is for this reason that it seems useful to 
construct an iterative solution to equation (9) in 
powers of the A(x,z) matrix. We shall do this by find- 
ing a Green matrix for [,, that is a matrix G~(x, z; x', z') 
which satisfies 

~,GI(x,z; x ' , z ' )=6(x -x ' )6 ( z - z ' ) I .  (11) 

Then by the usual device of treating the term of the 
right-hand side of equation (9) as a source, we may 
construct an equivalent integral equation and exhibit 
its solution by iterating the integral. 

We would point out that constructing the Green 
matrix is really unnecessary for merely turning equa- 
tion (9) into an integral equation. Because L represents 
directional differentiation along the characteristics, its 
inverse is merely directional integration along the char- 
acteristics and so the integral equation may be written 
down directly. However, we present the Green func- 
tion for two reasons" (i) it may be compared to the 
Green function that results when one does not neglect 
the term involving V2D(x,z) in equation (8), and (ii) 
it is notationally difficult to express the inverse of L 
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in matrix form, so the explicit use of the Green matrix 
is a helpful indexing aid when iterating the integral 
equation. 

We seek a matrix G~(x,z; x',z') which satisfies equa- 
tion (11). Since our crystal has infinite extent in the 
x direction and a boundary surface at z=0,  we are 
motivated to transform the equation with a Fourier 
transform in x and a Laplace transform in z. Without 
loss of generality, we shall take Gl(x,0; x', z') = 0. These 
transformations will then render the solution trans- 
parent. 

Transforming equation (1 I) we obtain 

(sI+ ikB)C,I(k,s; x',z') 
1 

- 2zc exp ( -  ikx') exp ( -  sz')I (12) 

where G[(k,s; x',z') is the transformed Green matrix. 
Hence we may write 

GZ(x,z; x',z')= ~ i  ~ ,,~-z~ (sI+ikB)- 

x exp [ik(x-x')] exp [s(z-z')]dsdk (13) 

where 1/(sI+ikB)=(sI+ikB) -~ and c is to the right 
of all poles of this matrix. We shall evaluate the s in- 
tegral with the generalized Cauchy relation for a ma- 
trix Q, 

1 ~ f(s) 
2zci s~-Z- Q - ds =f(Q),  

assuming f(s) is analytic in the domain including the 
eigenvalues of Q. (Since the matrices are diagonal here, 
we do not really need this relation; we present it as 
a useful tool for more sophisticated manipulations.) 
Again, referring to the s integral, we note that all the 
poles are on the imaginary s axis, since the elements 
of B are real, and so we must only require that c=e, 
where e>0.  For z<z',  we must enclose this contour 
on the right, obtaining zero for the integral. For z > z', 
we must enclose on the left and the simple poles con- 
tribute their residues (the integration contours are 
shown in Fig. 2). So we have 

O(z-z') 
G](x,z; x',z')= 2~ 

× I~_ooexp{ik[(x-x')I-(z-z')B]}dk (14) 

where O(z-z') is the usual unit step function. The 
Fourier inversion is similarly trivial and we have for 
equation (14) 

GI(x,z; x',z')=O(z-z')E(x,z; x',z') (15) 

where E(x,z; x',z') is a matrix with elements Eo~,= 
O[(x- x ' ) -  ( z -  z') tan 0o]~9~. 

The Green matrix is a diagonal matrix that is sin- 
gular on the characteristics emanating in the forward 
(z > z') direction from the source location (x', z '). That 

is, z behaves formally as a time variable, and through 
our choice of e > 0  we have constructed the physical 
retarded Green matrix. One sees in the result how 
hyperbolic operators tend to propagate discontinuities 
down their characteristics; the point singularity at 
(x',z') has been transported down each one of the n 
characteristics by the appropriate component of L. 
Since our differential operator is only first-order, and 
our source a delta function of second-order we could 
have anticipated the singular behavior of the Green 
matrix. 

We may now write an equivalent integral equation 
for equation (9) 

D(x,z)=D(O)+i E(x,z; x',z') 
0 c~ 

× A(x',z')D(x',z')dx'dz' (16) 

where D(0) is a column vector with elements do(x, O)= 
fig0 which are specified by the usual plane-wave bound- 
ary conditions at z = 0. Now because of the delta func- 
tions in GZ(x,z; x',z'), the integral over x' in equation 
(16) may be performed immediately leaving only an 
integration in one parameter. The final result, as we 
have already mentioned, is merely an integration along 
the characteristics. 

In component form, the integral equation becomes 

f" dg(x,z)=do(x,O)+i ~, Aoh[x--(z--z' ) tan 09,z'] 
o 

xdh[x- ( z - z ' )  tan Og, z']dz'. (17) 

We may exhibit equation (17) in matrix form by de- 
fining a retarded distance, through yret. "'0 = X - -  
( z - z ' )  tan 0 o. Then always keeping in mind that the 
index on yret. is the same as the index implied by 
do(x,z ) on the left-hand side of equation (17), we may 
write 

1,Z 

D(x'z)=D(O)+i!o A(xret"z')D(xr¢t"z')dz' (18) 

As we have mentioned, displaying the integral equa- 
tion in matrix form presents the notational problem 

' Im (s) 

Y 
Re(s) 

Fig. 2. The complex s-plane showing the contours (/-'1 for 
z > z '  and /'2 for z < z ' )  used to perform the Laplace 
inversion. 
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that we have tried to remedy above, albeit not very 
successfully. It is for this reason that we suggest using 
equation (16) when constructing the iterative solution. 
Then after one has written the nth iterated integral, 
one may then perform all the x integrals; the result 
in component form is the expansion 

do(x, z) =do(x, O) + d~l~(x,z ) 
+d~'~(x,z)+... +d~"~(x,z) 

where 
(19) 

d(,,)c,,- z) = g \ '~', 

x ~, . . .  Ao, l [ x - ( z - z l ) t a n  Oo, zd 
hl,h 2 . . . .  h n 0 t)O 

x Ahll,2[x--(z--z~) tan Oo--(zl--z2 ) tan 0,i,z2] 
X . . .  

x Ah,,_lh,,[X--(Z--ZO tan Oo--(zl--z2) tan 0hi 

-- . . . - -(z , ,_l--z , , )  tan 0h,_l, Z,] 

X dhn(O)dzl, dz2.. ,  dz , .  

We see from equation (19) that if the A(x,z) matrix 
becomes independent of position, we recover the solu- 
tion to the perfect-crystal case: 

DZ'(z) = exp (iAPz)D(0) (20) 

where the superscript p stands for perfect. In the gen- 
eral case, we see how each term in equation (19) serves 
to 'fill in' the characteristic triangle (see Fig. 1), with 
vertex at point (x,z), with successively higher orders 
of scattering. That is to say, if we construct for our- 
selves a mesh within the triangle by drawing lines paral- 
lel to the characteristics, each of the above terms serves 
to increase the density of the mesh. 

4. The second-order equations 

We would now like to examine the validity of the ap- 
proximation involved in ignoring the term involving 
V2D(x,z) in the second-order equations. First, let us 
rewrite equation (8) as 

] D(x, z) 

=iA(x ,z)D(x ,z) .  (21) 

Ordinarily we drop the second-order derivatives in this 
equation to yield the first-order hyperbolic system. 
This is a reasonable approximation because (i) the 
elements of D(x,z) are normally slowly varying for 
near-perfect crystals and (ii) the elements of C are 
small in the units appropriate to the scale of high- 
energy-electron diffraction. However, as we shall see 
later in this section, these may not be valid arguments 
for crystals with defects thousands of A in thickness; 
also it has been reported by Howie & Basinski (1968) 
that in some diffraction conditions, the first-order sys- 
tem is inadequate in describing the diffraction process 
in imperfect crystals. For these reasons, we will now 

examine the relation between the full dynamical equa- 
tions and the first-order hyperbolic system we have 
treated in the previous section. 

For the case of high-energy-electron diffraction in 
the Laue geometry, the z direction (see Fig. 1) is ap- 
proximately the direction of energy flow in the crystal. 
Because of this fact and because the kinetic energy of 
the electron is much greater than the potential energy 
of the crystal (by a factor of ~ 104), we expect that the 
variations in the dg(x,z ) may become rapid in the x 
direction but not in the direction of the energy flux. 

We have shown that in the case of a perfect crystal 
the D(x, z) are given by equation (20). Roughly speak- 
ing, this tells us that DP(z) will oscillate with depth, z, 
at a rate determined by the functions exp [i(),~-),j)z] 
where ),~ and ),~ are eigenvalues of A p. This is just the 
well known Pendell6sung behavior, and typically 
(),~-~,i),,~(200 A) -1 at 100 keV. Of course, in the dis- 
torted crystal we must generalize to y~(x,z) and ),j(x, z) 
but the important thing is that for slowly varying dis- 
tortions we would still expect these terms to retain the 
same order of magnitude. Consequently, the oscilla- 
tion distance will retain the same order of magnitude 
and remain several hundred A. As a result of this, we 
may neglect in equation (21) the term involving 
O2O(x,z)/t~z2 and thus obtain the following second- 
order parabolic system: 

( ~2 (~ c3 ) D(x,z ) - i c  -b-Tx2 +I ~ +B-~x 
=iA(x , z )D(x , z ) .  (22) 

We shall now consider this parabolic system with the 
intention of showing the relation between its solution 
and the solution we obtained for the first-order hyper- 
bolic system. By a procedure entirely analogous to the 
method used in the previous section, we can convert 
equation (22) into an integral equation. Again using 
the Fourier and Laplace transforms to construct the 
Green matrix, we arrive at 

D(x,z)=D(O)+i  Gn(x,z; x' ,z ')  
0 

x A(x ' ,z ' )D(x ' ,z ' )dx 'dz '  (23) 
where 

G"(x,z;  x' ,z ')  
= [4zci ( z -  z ' )C]-  1/2 exp [ -  iM2/4(z-  z')C] 

and M is a matrix with elements Moh=[(x--x' ) -  
(z--z ')  tan 00]fioh. The particular functional form of 
equation (22) is made possible by the fact that the 
matrices C and M are diagonal. Since M is a diagonal 
matrix, the matrix exponential is also diagonal. Thus, 
the Green matrix is again diagonal, as it was for the 
hyperbolic equations. Now, however, instead of hav- 
ing delta-function singularities along the characteristics 
(here we refer to the characteristics of the hyperbolic 
system), the Green matrix is non-zero for all values of 
the parameters. Effectively, the x' dependence is just 
a phase which is zero and stationary along the char- 

A C 3 1 A - 5  
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acteristics of the hyperbolic system, and rapidly vary- 
ing away from the characteristics. We can see that the 
phase is rapidly varying away from the characteristics 
because (i) C is small and (ii) the phase is quadratic 
in the distance from a characteristic. Fig. 3 shows 
graphically the behavior of a typical term of this Green 
matrix. 

As an aside at this point, it is of value to show how 
the Green operator ~ i  reduces to the Green operator 
for the hyperbolic system in the limit as C ~ 0. The 
Green matrix Gn(x, z; x', z') acts like a matrix of delta 
functions G~(x,z; x',z') inside the integral as C - +  0. 
We can see this behavior intuitively by recalling the 
method of stationary phase for evaluating integrals 
(see Copson, 1965). When we have integrals of the form 

If( x) exp [ivQ(x)]dx 

where v is a large parameter, we know that the rapidly 
oscillating phase term effectively washes out contribu- 
tions to the integral except at the stationary phase 
point, that is the point where 30(x)/Ox=O. Thus the 
rapidly oscillating phase acts like a delta function at 
the stationary phase point when it is in an integral. 
Looking at equation (23) we see that 1/C is a large 
parameter and so the x' integral is of the form where 
the stationary phase method is applicable. From the 
analysis of the previous section and this section, we 
can construct the formal identity 

&(fl) =l im (4reiN) -1/z exp [-i(x-fl)2/4N] . 
N - o 0  

Returning to a more careful treatment of our in- 
tegral equation, we are motivated to try a stationary 
phase expansion for the integral in x'. We might ex- 
pect the initial terms of such an expansion to yield 
the hyperbolic system and we shall see that it does. 
The remainder provides implicit correction terms. 

We want to expand the following integral in a sta- 
tionary phase expansion: 

J = i l  ~ exp ( - i v M  2) A(x',z')D(x',z')dx' (24) 
d - -  oo 

where v= 1/4(z-z')C. Now, in order to simplify the 
notation, we define the column vector P (x ' , z ' )=  
iA(x',z')D(x',z'); then expanding in a Taylor series 
about the stationary phase point l z o = x - ( z - z '  )x  
tan 0o we obtain for each element of J :  

Jg= l~_ exp [iv(x'-Izg) 2] 

[ O Pg(luo,z') ] x Po(lto, z' ) +(x'-/.zo)-- ~ + . . .  dx' 

[ (~ / )  -in 71 (~ / )  -3/2 
~ 1/~ e . ( m , z ' )  - ~ .  

x -~x r P~(~o,z') + . . .  (25) 

where this is an asymptotic expansion that is valid as 
12 ---> CX:). 

Now if we substitute this expression for J back into 
equation (23), we obtain 

If* D(x,z)~D(O)+i (xr~t',z')D(x'~t',z')dz ' 

+ ( z - z ' ) C  ~x 2 [A(x ' ° " , z ' )D(x ' ° " , z ' ) ]  

+ . . . } d z '  (26) 

Writing equation (23) in this form enables us to see 
again how the Green matrix Gn(x,z; x',z') reduces to 
the Green matrix G~(x, z; x', z'), for the hyperbolic sys- 
tem, in the limit as C -+ 0. 

For the stationary phase approximation to the in- 
tegral of equation (23) [i.e. the hyperbolic system of 
equation (9)] to be valid, the third term on the right- 
hand side of equation (26), which we will call the cor- 
rection term, should be negligible. In order for this to 
be true, we see that roughly the same restrictions apply 
as were cited in the beginning of this section. However, 
now we have these restrictions in an explicit form. We 
see that the second x-derivative of A(x,z)D(x,z) must 
be small, but it must be small in the sense that its in- 
tegral along a characteristic of the hyperbolic system 
modified by a factor proportional to ( z - z ' ) C  provides 
a negligible contribution to the wavefunction. Thus, 
even if the solution maintains its diffracted-wave char- 

co Re[G~g (x,z~ x',z')] 

(~x',z') 

z2 = Constont 
~ ~,J v ouI 

Fig. 3. Schematic plot of the real part of a term of the Green 
matrix of the second-order equations. Note how the Green 
function samples primarily along the characteristic line 
xg(z), and how the width and amplitude of the sampling 
depend on the distance from the source (x',z'). 
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acter it is conceivable that the correction term might 
still become significant if the diffracting region is long. 
It is difficult to say exactly when the correction term 
in equation (26) might become important, but it could 
be a useful tool in numerical calculations to check the 
validity of ignoring O2D(x,z)/OX2 in the second-order 
equations. By simultaneously evaluating the first cor- 
rection term in equation (26) while performing the 
numerical integration of the hyperbolic system, one 
can tell immediately when this term becomes a signif- 
icant correction to D(x,z). 

We see that a good working result is the following: 
Let D~(x,t) be a solution (e.g. obtained numerically) 
to the first-order equation for a crystal of thickness t. 
Then, we may have confidence in this solution if 

[st0 I ( t -  z ' )C ~-z- [A(xret',z')OI( xret',Z')]dz' 

~ IO~(x, t)l (27) 

for a range of x, and a number of components of 
D~(x, t) for which DI(x, t) is numerically significant. 

5. Conc lus ions  

By converting the dynamical equations of high-energy- 
electron diffraction from an imperfect crystal into in- 
tegral equations we have been able to (i) construct an 
iterative solution for the Fourier coefficients of the 
electron wave function for both the first and second- 
order equations, and (ii) compare these solutions in 
such a fashion as to obtain an explicit correction term, 

which is a measure of the validity of ignoring second- 
order partial derivatives in the dynamical equations. 

In concluding this paper, we would like to stress the 
complementary aspects of the differential equation ap- 
proach and the integral approach to high-energy-elec- 
tron diffraction theory. The differential equations have 
received the most attention to date, undoubtedly owing 
to the ease by which they can be numerically im- 
plemented. On the other hand, the integral equations 
that we have developed in this paper have definite the- 
oretical advantages. For instance, with regard to the 
approximation investigated in this paper, it is difficult 
to look at the differential equation (7) and assess the 
importance of the - iVZdo(x, z)/2koz term. Even though 
the coefficient, -i/2k,,z, of this term is small, in some 
sense, we intuitively realize that it must be the specific 
crystal potential that decides the matter. In other 
words, there may be cumulative effects that make this 
term important. These cumulative effects are explicitly 
displayed in the integral of equation (27) thereby con- 
firming our intuitive feelings. 
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Use of High-Order Probability Laws in Phase Refinement and Extension of Protein Structures 
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High-order covariance matrices are used to show that the maximal determinant rule and the regression 
equation can be applied successfully to the phase refinement and extension of protein structures. With 
structure factors calculated from the atomic model of insulin, the use of an order-400 covariance matrix 
leads to the structure phases with an average error A~ of 15 °. The method has also been applied to 
actual data of insulin for phase refinement and for phase extension from 2.8 to 2 .~. 

The investigation of the probability law for one struc- 
ture factor included in a Karle-Hauptman determinant, 
connected with the regression-plane equation, has been 
developed recently (de Rango, 1969; Tsoucaris, 1970; 
de Rango, Tsoucaris & Zelwer, 1974). Here the poss- 
ibility of applying the regression equation in phase 
determination of protein structures is investigated in 
two important cases: 

- re f inement  of the phases approximately known 
from the isomorphous-replacement method, 

- phase extension: determination of new structure- 
factor phases from approximately known data. 

We have already shown that the maximal deter- 
minant rule and the regression equation, using high- 
order covariance matrices, can be applied sucessfully 
to the phase determination of protein structures (de 
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